The mathematical expectation for the number of spaces moved in one turn is:
      A.   3 spaces forward.
Th result or the sample space on spinning a spinner twice is:
      (1,1)   (1,4)   (1,6)   (1,8)
      (4,1)  (4,4)   (4,6)  (4,8)
      (6,1)  (6,4)   (6,6)  (6,8)
      (8,1)  (8,4)   (8,6)  (8,8)
Total number of outcomes= 16
The number of outcomes whose sum is even= 10
( Since the outcomes are: {(1,1) , (4,4) , (4,6) , (4,8) , (6,4) , (6,6) , (6,8) , (8,4) , (8,6) , (8,8)} Â )
The number of outcomes whose sum is odd= 6
( Since, the outcomes are: { (1,4) , (1,6) , (1,8) , (4,1) , (6,1) , (8,1) }
Probability(sum even)=10/16
Probability(sum odd)=6/16
Hence, the expectation is:
 [tex]E(X)=\dfrac{10}{16}\times (+6)+\dfrac{6}{16}\times (-2)\\\\\\E(X)=\dfrac{60-12}{16}\\\\\\E(X)=\dfrac{48}{16}\\\\\\E(X)=+3[/tex]
         Hence, the answer is:
       A.  3 spaces forward.